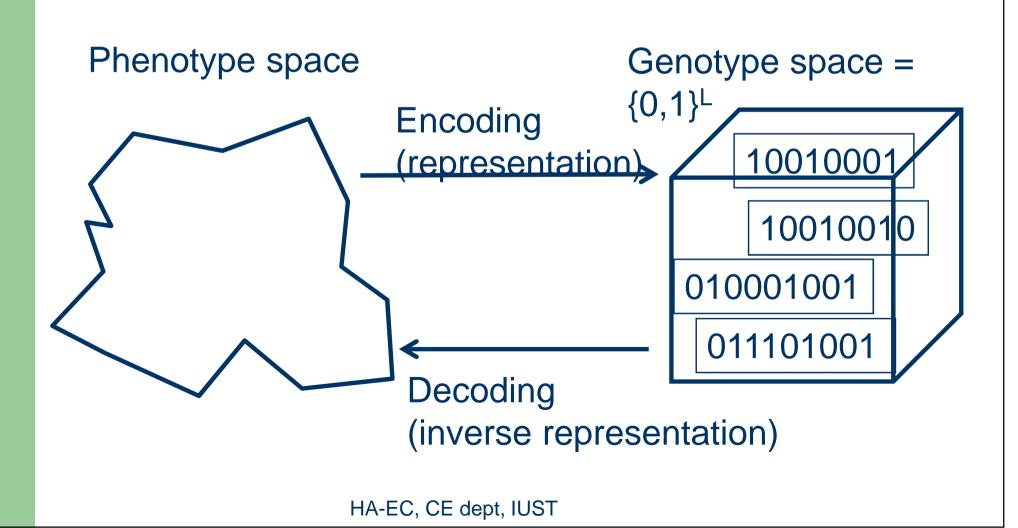
Genetic Algorithms

Chapter 3-1

Source: Eiben & Smith Edited by: Hosein Alizadeh http://webpages.iust.ac.ir/halizadeh/ Computer Engineering Department, Iran University of Science & Technology HA-EC, CE dept, IUST

GA Quick Overview

- Developed: USA in the 1970's
- Early names: J. Holland, K. DeJong, D. Goldberg
- Typically applied to:
 - discrete optimization
- Attributed features:
 - not too fast
 - good heuristic for combinatorial problems
- Special Features:
 - Traditionally emphasizes combining information from good parents (crossover)
 - many variants, e.g., reproduction models, operators

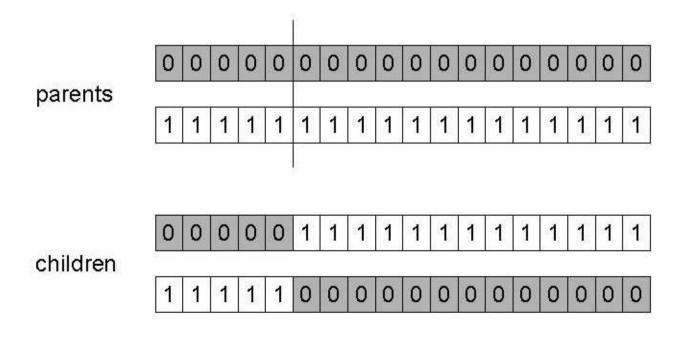

Genetic algorithms

- Holland's original GA: Simple GA (SGA)
- Other GAs use different:
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms

SGA technical summary tableau

Representation	Binary strings
Recombination	N-point or uniform
Mutation	Bitwise bit-flipping with fixed probability
Parent selection	Fitness-Proportionate
Survivor selection	All children replace parents
Speciality	Emphasis on crossover

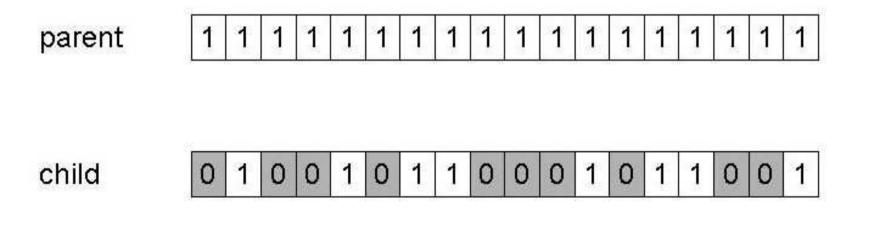
Representation


5

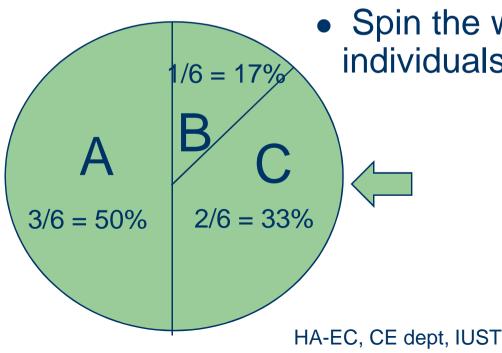
SGA reproduction cycle

- Select parents for the mating pool (size of mating pool = population size)
- 2. Shuffle the mating pool
- 3. Apply crossover with probability p_c , otherwise copy parents
- 4. For each offspring apply mutation (bit-flip with probability p_m independently for each bit)
- 5. Replace the whole population with the offsprings

SGA operators: 1-point crossover


- Choose a random point
- Split parents
- Create children by exchanging tails
- P_c typically in range (0.6, 0.9)

HA-EC, CE dept, IUST


SGA operators: mutation

- Alter each gene independently with p_m
- p_m : mutation rate
 - Typically between 1/pop_size and 1/ chromosome_length

SGA operators: Selection

- Main idea: better individuals get higher chance
 - Chances proportional to fitness
 - Implementation: roulette wheel technique
 - Assign a part of the roulette wheel to each individual

- Spin the wheel n times to select n individuals
 - fitness(A) = 3
 - fitness(B) = 1
 - fitness(C) = 2

An example after Goldberg '89 (1)

- Simple problem: max x² over {0,1,...,31}
- GA approach:
 - Representation: binary code, e.g. 01101 \leftrightarrow 13
 - Population size: 4
 - 1-point xover, bitwise mutation
 - Roulette wheel selection
 - Random initialisation
- We show one generational cycle done by hand

X² example: selection

String	Initial	x Value	Fitness	$Prob_i$	Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	$0\ 1\ 1\ 0\ 1$	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1 \ 0 \ 0 \ 1 \ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

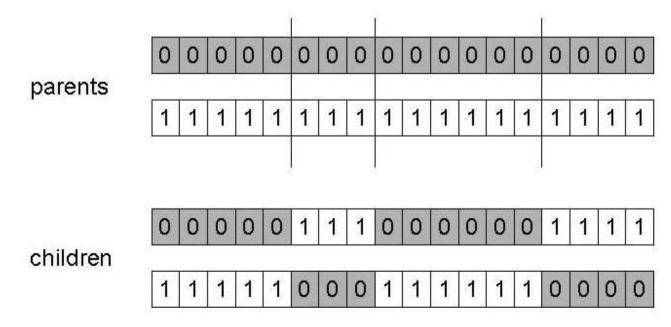
X² example: crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ \ 1$	4	$0\ 1\ 1\ 0\ 0$	12	144
2	$1\ 1\ 0\ 0\ \ 0$	4	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ \ 0\ 0\ 0$	2	$1\ 1\ 0\ 1\ 1$	27	729
4	$1 \ 0 \ \ 0 \ 1 \ 1$	2	$1 \ 0 \ 0 \ 0 \ 0$	16	256
Sum					1754
Average					439
Max					729

X² example: mutation

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ 0$	1 1 1 0 0	26	676
2	$1\ 1\ 0\ 0\ 1$	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ 0\ 1\ 1$	1 1 0 1 1	27	729
4	$1 \ 0 \ 0 \ 0 \ 0$	10100	18	324
Sum				2354
Average				588.5
Max				729

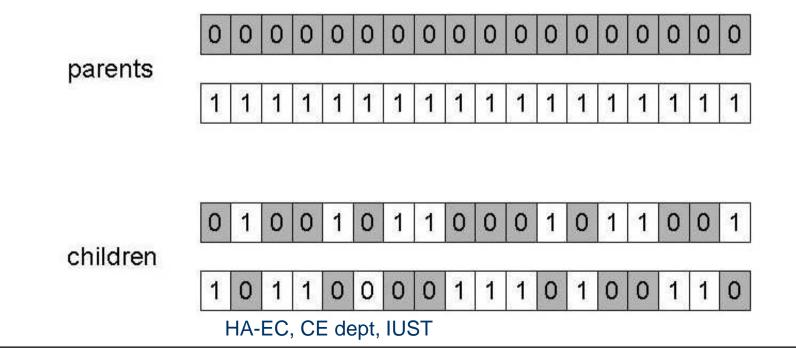
SGA


- Subject of many studies
- Shortcomings:
 - Representation: too restrictive
 - Mutation & crossovers: only applicable for bit-string & integer representations
 - Selection mechanism: converging populations with close fitness values
 - Next Generation model (step 5 in SGA): can be improved with better survivor selection

Alternative Crossover Operators

- Performance with 1 Point Crossover depends on the order of genes
- Positional Bias
 - more likely to keep together genes that are near each other
 - Can never keep together genes from **opposite ends**

n-point crossover


- Choose n random crossover points
- Split along those points
- Exchange parts
- Generalisation of 1 point (still some positional bias)

HA-EC, CE dept, IUST

Uniform crossover

- Assign 'heads' to one parent, 'tails' to the other
- Flip a coin for each gene
- Inheritance is independent of position (No Positional Bias)

Crossover OR mutation?

- which one is better / necessary?
- Answer (at least, rather wide agreement):
 - it depends on the problem, but
 - in general, it is good to have both
 - both have another role
 - mutation-only-EA is possible, xover-only-EA would not work

Crossover OR mutation? (cont'd)

Exploration: Discovering promising areas in the search space (gaining information)

Exploitation: Optimizing within a promising area (using information)

• Crossover is explorative

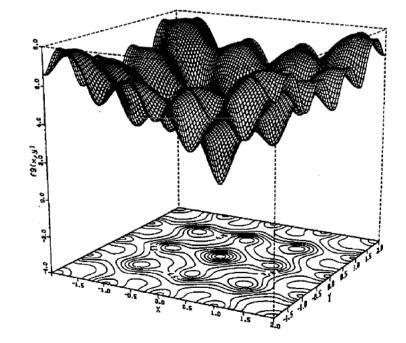
-makes a big jump to an area somewhere "between" parent areas

• Mutation is exploitative

- creates random *small* diversions, staying near the parent

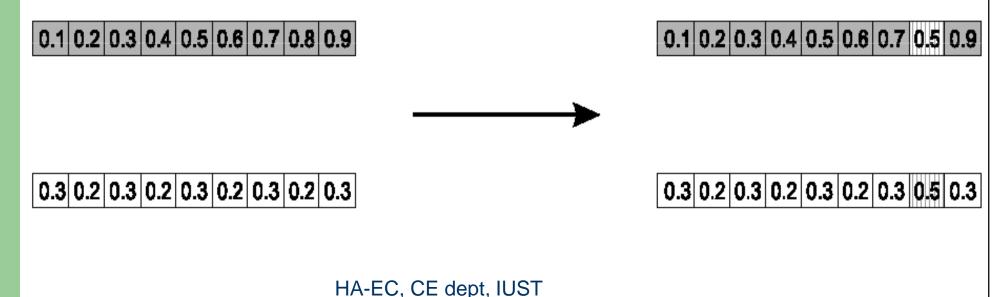
Crossover OR mutation? (cont'd)

- crossover only combine information from two parents
- mutation only introduce new information
- Crossover does not change the allele frequencies of the population (thought experiment: 50% 0's on first bit in the population, ?% after performing n crossovers)
- Often need a 'lucky' mutation to hit the optimum


Integer representations

- Problems with integer variables
 - image processing parameters
 - categorical values {blue, green, yellow, pink}
- N-point / uniform crossover operators work
- Extend bit-flipping mutation to make
 - "creep" i.e. more likely to move to similar value
 - Random choice (esp. categorical variables)

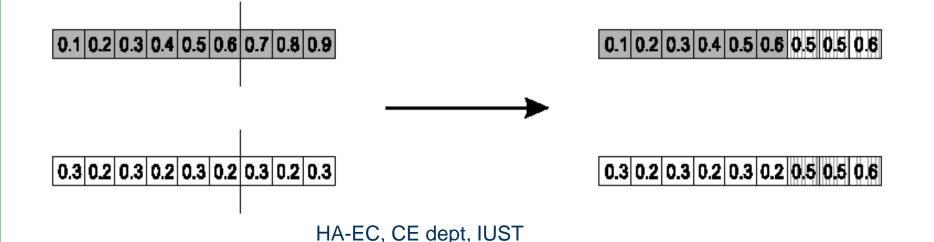
Real valued problems


- Many problems occur as real valued problems
 continuous parameter Optimization f : ℜⁿ → ℜ
- Ackley's function

$$f(\overline{x}) = -c_1 \cdot exp\left(-c_2 \cdot \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}\right)$$
$$-exp\left(\frac{1}{n} \cdot \sum_{i=1}^n \cos(c_3 \cdot x_i)\right) + c_1 + 1$$
$$c_1 = 20, \ c_2 = 0.2, \ c_3 = 2\pi$$

Single arithmetic crossover

- Parents: $\langle x_1, \dots, x_n \rangle$ and $\langle y_1, \dots, y_n \rangle$
- Pick a single gene (k) at random,
- child₁ is: $\langle x_1, ..., x_k, \boldsymbol{\alpha} \cdot y_k + (1 \boldsymbol{\alpha}) \cdot x_k, ..., x_n \rangle$
- reverse for other child. e.g. with $\alpha = 0.5$

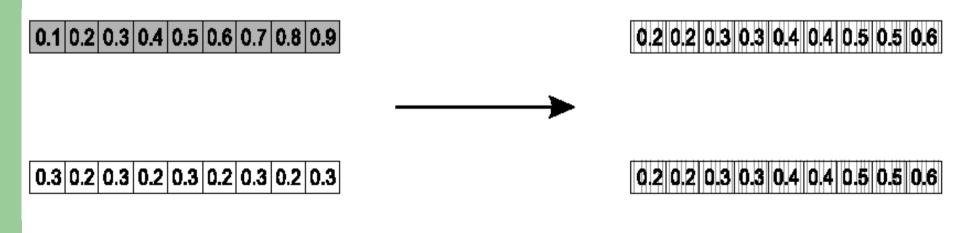


Simple arithmetic crossover

- Parents: $\langle x_1, \dots, x_n \rangle$ and $\langle y_1, \dots, y_n \rangle$
- Pick random gene (k) after this point mix values
- child₁ is:

$$\langle x_1, \dots, x_k, \alpha \cdot y_{k+1} + (1-\alpha) \cdot x_{k+1}, \dots, \alpha \cdot y_n + (1-\alpha) \cdot x_n \rangle$$

• reverse for other child. e.g. with $\alpha = 0.5$



Whole arithmetic crossover

- Most commonly used
- Parents: $\langle x_1, ..., x_n \rangle$ and $\langle y_1, ..., y_n \rangle$
- child₁ is:

$$a \cdot \overline{x} + (1-a) \cdot \overline{y}$$

• reverse for other child. e.g. with $\alpha = 0.5$

HA-EC, CE dept, IUST